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Summary

Cooperativity in water interactions is used to construct a model predicting that both
structure and energy are propagated through the liquid in the form of sinusoidal
waves.

Cooperativity in water links the concepts of structure and energy. The non-
additivity of the hydrogen bond means that ordered regions induce energeti-
cally favourable bonding with neighbouring molecules facilitating the struc-
ture building process. Thus, we do not consider local changes as resulting
from random fluctuations, but as taking definite quantifiable values. We
introduce s(x, ¢) to represent the density of structure at position x and time ¢.
Assuming structure building is proceeding at x as depicted in Figure 1, we
have the incremental increase

As = —(ds/dx) + Ax (1)

and s becomes the dashed curve. The reaction thus appears like a polymeriz-
ation travelling at that moment from left to right with velocity ¢(s) = Ax/At,
allowing us to write s in terms of ¢

As = —(3s/ox) - c * At (2)

Defining now another density function &(x, ¢) associated with the energy lib-
erated by structure formation, whereby for small changes Ae = ¢ + As, we can
use Equation (2) to link s and ¢

(0¢/0t) = —a + ¢ * (0s/0x) 3)

We can also regard s as the degree of a chemical reaction since its change
measures a redistribution of bonds. This reaction is viewed as happening at or
close to equilibrium and hence, in the language of irreversible thermo-
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Figure 1 Schematic representation of
how the structure function s(x,¢) appears
to move with velocity ¢ = Ax/At. Assum-
ing there is local build-up occurring, then
molecules to the left which already have a
high degree of order promote structuring
on the right via the cooperative interac-
tions and so the process travels in the
positive x-direction

dynamics, its rate can be equated to an affinity or potential difference be-
tween products and reactants. The values of s at x and x — Ax represent he
reactants and products, provided the reaction is proceeding as depicted in
Figure 1, and over the same distance the potential drop is (de/dx) Ax, and the
reaction rate in the small volume Ax is

(3s/0r) = —y - (3¢/dx) (4)
This equation has the form of a phenomenological equation where the *flux'
ds/dt is set proportional to the driving ‘force’ —(de/dx).
Combining Equations (3) and (4) leads directly to the classical wave equa-
tions
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provided the velocity can be expressed as ¢ = ¢ - y. This result implics that
both structure and energy are transmitted as waves in a medium where (he
mechanism of intermolecular interactions is cooperative.

The exact form that a structure wave would take is an open question, so [or
discussion we take the simplest stationary sinusoidal form

¢ = 2 cos(kx)cos(wt) s = 2 sin(kx)sin(wt) (6)
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where k = 2n/A, @ = 2nv and Av = c. In wave motion of this type the energy
is not given dircctly by the oscillation but by its quadratic form, so we intro-
duce two new density functions

E = 4a cos*(kx)cos’(wt) I = 4b sin’*(kx)sin*(wt) (7)

As the wave passes it causes changes in E dx and 7 dx, i.e. the local energy
and structure content in the small volume dx. After introducing a factor T to
equalize the amplitudes, a = bT, we can add these changes together to obtain
another oscillating function

aa]f T y = —4wbT cos(2kx)sin(2wt) (8)

This represents another local change and, if taken as a displacement wave
describing the to and fro motions of the water molecules accompanying the
fluctuations in E and I, it is simply the local volume change. This new wave
has the form

y = —2Y sin{2kx)cos(2wt) 9)

whereby small volumes change with the rate d(dy/dx)/d¢. This argument
allows us to identify Equation (8) with the thermodynamic statement,
dE = T dS — P dV, connecting changes in internal energy, entropy and vol-
ume. This condition for the wave motion prescribes that the wavelength is
proportional to the ratio P/T since it follows

_ 4y P
b T

(10)

From Equation (7) b is an amplitude giving the maximum density of order or
structure building centres. Considering the ratio P/T as a measure of the
density of degrees of freedom, then Equation (10) tells us that the wave has
longer wavelengths in systems where there are more degrees of freedom per
ordering centre. This picture seems reasonable, since it predicts that local
order extends over a larger region, i.e. we have bigger clusters or networks,
when there are more modes of interaction available to each building centre.
Another consequence of Equation (8) is that the changes in the function /
represent negative changes in entropy. The work of Brillouin has established
this form of function, the so-called negentropy, in theoretical physics. It is
built around the idea that at the molecular level negative entropy can be
identified with information. We are thus led to the conclusion that infor-
mation can be transmitted through an aqueous medium without requiring a
permanent covalently linked structurc. It also provides us with a thermo-
dynamic definition of the variable s(x, 1) which was introduced in quite a
different way in Figure 1. On the other hand, (v, £) being the square root of
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Figure 2 Regions of defined molecular rotations and translations

according to (x,¢) (solid curve) and y(x,¢) (dashed curve). In each of the

four half-wavelengths of y is a different combination. s(x,f) shown by the
broken curve is taken to be zero at this moment, sin(wt) = 0

energy, is a more familiar quantity. It probably represents the momentum
associated with rotations, as the molecules reorientate to fit into or break
away from ordered clusters. Their translations are given by Equation (9),
which in combination with these proposed rotations ¢(x, ¢), are depicted in
Figure 2.

Within the bulk of liquid water we cannot expect any preferred direction of
propagation. The build-up and break-down of structured regions should then
appear as random clustering and molecular cross-linking as randomly perco-
lated hydrogen bonding. But a solute—solvent interface might force direction
and order into these fluctuations. The living cell abounds in regions of layered
membrane systems and the aligned protein filaments of the cytoskeleton in
registered arrays. These macroscopic structures present networks of parallel
interfaces to the solvent medium, so that, assuming they impose direction on
the structure wave, the entire region is filled with the solvent medium fluc-
tuating in a concerted way.

The wave model depicts how cooperativity could have far-reaching influ-
ence which operates without the existence of an interposed covalently bonded
structure. It does not predict the molecular details of any structure, as do
computer simulations, but it does predict that they repeat themselves period-
ically over larger distances and that structural changes can be transmitted
beyond the local region of their occurrence. Such a mechanism may underlie
the observations of long-range effects seen even in the absence of detectable
ordering in the intervening solvent medium.



